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NOTATION

Body axis system coincident with principal inertial
axes

Nonrotating reference axas

Control axis system pitched by angle u, and rolled

by angle v, relative to u, v, w

(See u', v', w')

Pitch angle displacement of axis 3

Roll angle displacement of axis 3

Pitch, roll angle displacement of the thrust vector

Feather angle measured positive down from u'-v'
plane to axis 2

Teeter angle measured positive down from u'-v'
plane to axis 1

Feather and teeter angles measured from the u, v
plane

Dimensional angular velocities around axes 1, 2, 3

Nondimensional angular velocities around axes
1, 2, 3 =Q,/Q3, Q2/33, 1 :

Nondimensional time equals azimuth angle measured
from u axis to axis 1

Derivative with respect to t
Moments of inertia about axes 1, 2, 3

Angle by which damping moment vector (i.e.,
woment proportional to -w2) lags axis 2

Angle by which feedback moment vector (i.e.,
moment proportional to —K89) lags axis 2

Angle by which forcing function moment vector
lags axis 2

Nondimension#l moments fbout afes 1, 2 (dimensional
moments divided by I,Q4°, 1293




KiK

M

EM

Rotor blade chord
Rotor radius
Coefficients of the stability quartic

oN I, -1

Feather stability coefficient = ~ Lo 2 4 €. =2 B
ow I 11
2 1 1
N
Teeter damping coefficient = = 3 2 (i Q:35meR” C
wy 12 R
8N2 13 - I1
Teeter stability coefficient = =
] I
1 2
BNZ
Teeter feedback coefficient = - ETR
2
. aul 12
Feather feedback coefficient = = —= [K = g, —
362 1l 2 I1
Nondimensional teeter moment forcing fumction
)
Nondimensional feather moment forcing function {E = €3 7~
1

Pitch offset angle from w' axis to mean position
of axis 3

Roll offset angle from w' axis to mean position
of axis 3

Pitch lag angle from u'-v' plane to plane containing
instantaneous motion of axis 1

Roll offset angle from u'-v' plane to plane containing
instantaneous motion of axis 1

Nondimensional pitch rate of the control axis
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ABSTRACT

A rigid two~bladed helicopter rotor mounted with no mechanical

}a constraint of its teetering and feathering motions is analyzed with
Az regard to the stability and controllability achievable with a simple
) feedback moment linearly proportional to teeter angle. Subject to

' ﬂq ) confirmation by a detailed design study, it is tentatively concluded
‘g% that the level of stability and control practically achievable with
MQ- such a system would be adequate for tip-jet~driven very-heavy-lift
54# helicopters. It is further concluded that the outlook for relatively
Y low vibration levels is favorable.

INTRODUCTION

There is generally conceded to be an upper limit on helicopter disk loading

(for reasons of downwash effects on personnel, objects, and ground surface in

the landing/takeoff area and damage to the helicopter from re-circulated debris)

and on rotor tip speed (for reasons of compressibility effects on rotor aero-

\ dynamics). If disk loading and tip speed are held fixed, the following propor-
1A
:'j tional relacionships with rotor radius R apply:
)

[
1 \ Maximum takeoff weight ~ R2
Fi‘ Rotor horsepower ~ R2
::g Rotor rpm ~ 1/R
;Q Rotor torque ~ g3
i
80

>

With torque increasing so much faster than total helicopter weight, the weights

L )

of the main rotor transmission and the anti-torque system tend to become excessive

when one attempts to design conventional simple helicopters in the very~heavy-

lift range.

The tip-jet-driven helicopter is a possible solution that has been known

for many years. Though less efficient in energy terms when considering the main

rotor alone, the elimination of the transmission and drastic reduction of anti-

torque system requirements may lead to a significant overall advantage.

AN a1 O . -~
B O M e P X Y 0 L T T T S T T T T T N T T T L T T T T N T A e DX,
LIl LU LG LA LA L% L LA LA M\ LA LIS LS L LN



Tip-jet~driven rotors are constrained, however, to a small number of rotor
blades (preferably two, at most three) to maintain an adeguate ratioc of blade
cross~section area to blade planform area for efficient ducting of the jet gases
through the blades to the tip jet norszles. The control of a very large two- .
bladed rotor through conventional mechanical cyclic pitch becomes a challenging
problem. GControl actuation loads can become very large, and reacting these loads
on the fuselage can entail severe vibrations, especially when the helicopter
flies lightly loaded and fuselage mass and inertias are relatively low. These
cinsiderations have stimulated interest in the possibility of a fully gimballed
rotor; that is, one which 1s mechanically unconstrained in both teetering and
feathering motion. Control moments might be applied to such a rotor by circu-
lation control on the blades using a portion of the jet-drive gases, or by trailing
edge flaps with actuation forces reacted within the blade itself.

Previous analyses* of a rigid two-bladed fully gimballed helicopter rotor
showed that with appropriate mass balancing such a rotor can be stable at zero
and low advance ratios 1; the sense that transient disturbances will damp to zero,
and responses to harmonic excitation will damp to a steady state. (If the harmonic

excitatiou includes a one-per-rev component of feathering moment not coincident

with the rotor damping axis, the steady state response will include a progressive
precession of the axis of rotation.)

A more desirable level of stability is one in which the rotor would return
to a preselected orientation with the fuselage after a transient disturbance and
in which small feathering moment excitatiomns, even if not precisely coincident

with the damping axis, would not produce progressive precession. The purpose of

* As reported by H.R. Chaplin (DTNSRDC/TM-16-80/16, "Some Dynamic Properties
of a Rigid Two-Bladed Fully Gimballed Tip Jet Helicopter Rotor with Circulation
Control,™ Aug 1980).
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this effort is to examine the effectiveness of a feedback moment proportional
to teeter angle (as measured frow a plane fixed to the fuselage) as a nmeans of

achieving this type of astability.

EQUATIONS

*

The Euler equations™ are written in nondimensional form as:

d)l = -sz - Kll(ez + EM(t) (1)
d’z = <Buy + Dwy = Kaz + M(t) (2)
w3 = congtant

These equations are equivalanﬁ to the equations in the previous work, but the
nomenclature differs. As written here, M is the nondimensional disturbing aero-
dynamic moment due to gusts or non-zero advance ratio, and -K83 is the nondimen-
sional feedback wmoment. (Coefficients are defined in the Notation.)

| A nonrotating axis system u, v, w cqinciding with the principal axis gystem
1, 2, 3 at time zero is defined. Pitch, roll velocity of axis 3 is given for
small-amplitude motions by

U=uwpcost+u sint : (3)

V= -wj cos t +uwpy sint (4)
Feather and teeter angles relative to the u—v plane are given by

) *vees t ~usint (5)

B2 =ucos t +vsint (6)

* Symon, K.R., "Mechanics,” Second Edition, Addison-Wesley Publishing Co., Inc.,
Reading, MASS (May 1961), p. 451,
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o g -

ﬂf; Differentiating these equations and combining with Eqs. (3) and (4) gives -

01--w1-02

')_ B = wy + 6}

i 8y = 0y - w) - 6 M

0y STABILITY

n“ﬂ Equations (1), (2), and (7) now form a set of three linear differential

RO, equations relating the three variables u), w3, 82+ Rearranging, these equations
) become

(B + 62) +w) ~dg =0 ' (7)
K1Kgq + L'u]_ + Awpy = EM (1)

K8y - Dwj + (i + Bup) = M (2)

This is a fourth-order linear system that responds to the excitation M(t) and
At
has additional solutions of the form e 1 , where the Ai‘s are roots of the

determinant
22+ 1 1 -\
KK s A =0
K <D A +B )
or
AWorapd can? vap +ag =0 (8)
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. whare
W
‘o
;:; ) A9 = A(D+K) - K)XB
.l"
a A = B - KK (1~
o 1 1K (1-D) (9)
i3 - A2 =1 +X +AD
l.:
0 Ay = B
.'b: .
5:: The well-known criteria for atability are:
[
{.‘ 1. All of the coefficients Ap, A}, A2, A3 must be positive; and (10)
R
:. 2, The quantity ¢ = AjAjAy - Alz - AQA32 must also be positive., (11)
)
0 For practical rotor systems, the teeter stability coefficient D = (19 ~ I;\/1
o 3 1 2
will always be very slightly less than unity. Insight iuto the stability criteria
W
:E: is facilitated by examining the case of D = 1:
..'
u AQ = ACI4K) =~ K)KB
, A =3
.‘_:,
fa Ap =1 +R+A when D = 1 (12)
\/ . .
D)
| . ¢
. ::: Ay = B ,

o = KB2(1-A + K;3)

:: The teeter damping coenfficient B is necessarily poasitive on physical grounds
.,:::' as long as the predominent lift curve slope of the rotor blades is positive.

(Only for a very severaly stalled votor might this not be so.) It happens that
R a /Bl + Ag + 1 = Ay; therefore, if g and Aj are positive, A, is also positive

S

The stapility criteria thus reduce (for A poaitive, D = 1) to

' 1. KK B/A =1 + K to assure Aj is positive, and

n

;E: 2, KK B/A=(1 - 1/A) to ussure 0 is positive, as necessary and sufficlent
)

::, couditions for stability when D = 1.

. Stability boundaries are illustrated in Figure 1. The region of primary in-
l.|

)

;:: terest for a helicopter rotor is the firat quadrant with K, K, and A all positive. (
U

.}:
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A>0
D=1
STABLE WHEN
1
“-Z)K - K‘KB/A < K+1

. BOUNDARY FOR 0> 0 IFA=1

p | T raan -
g !

1, A P . 5

Fig. 1. Stability boundaries when D = 1.
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It is interesting to note, however, that stability is possible with either K; or
K or with both negative. (There is also a limited region of stability with A
negative; boundaries with A negative are not illustrated in Figure 1, but are
easy to draw. Since with no feedback system (i.e., with K=0) A must be positive

for atability, this region is analogous to the "fly-by-wire” airplane designed to

be unsiable without its feedback syséem in operation.)

STEADY STATE RESPONSE TO FIRST-HARMONIC EXCITATION E
In the previous study* it was found that the steady-state response of a rotor .
without feedback to first-harmonic excitatiom was a two-per—rev circular wobble
of axis 3 superimposed on a steady progressive precession of axis 3. Since a
two-per-rev circular wobble of axis 3 corresponds to a pure harmonic motion of
teeter angle 09 and, hence, pure harmonic moments from the feedback terms (and
since we expect progressive precession t> be arrested by the feedback system), we SJ
would expect a stationary two—per-rev wobble to be the primary steady-state
response of the rotor with feedback. The simplest approach is to assume such
a motion and solve for the excitation required to produce it. Suppose
u -1 sin 2t + a

2

v = - %—cos 2t + b

wy = ~sla ¢t

w2 = cos t

B2 =acost+ (b+ %) sin t .
% _ 8) = -a sin t + (b - %) cos t (13) )

g * H.R. Chaplin, DTNSRDC/TM-16-80/16, Aug 1980.
o
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NP

Substituting these quantities into Eqs. (1) and (2) ylelds

- EB + (1-A) - - o T .

8
K(Kl-E)

L = M b - ' : 7 ‘;3.!
b+ KX, °E) o %

KB + (1-A) K, (D-1)

X T 1 sin t

M=

cos t + —
1 - K

Again, noting that D is nearly unity in practical cases, the case D = 1 provides

simple insight. ) o . : SR
] =

a. The wobble circle is tangent to the u axis. ]
b. The Center of the circle is located at 'é
-a - EBEUA) i | with A
TR TREE + (-8) E
D=1 ' (14)

e DL | . g

v=pDhb=-~ E.KlB ¥ (-n M M=Mcoeg t ‘ | ‘é

c. Oy =acost : ' )
d. 9 =2bcos t - asint ) _ )

e. The thrust vector, which is normal to the plane described by axis 1, .
" lies at up = u = a, vy = 0, stationary. (Contrary to the interpretation g
given in the previous work,* the wobble of axis 3 does not imply & 3
wobbling thrust vector. The thrust vector is stationary under first-

harmonic steady-state excitation.)

*H.R. Chaplin, DTNSRDC/TM-16-80/16, Aug 1980.




BEHAVIOR NEAR STABILITY BOUNDARIES WITH NO EXCITATION
These conclusions are of course valid only for combinations of coefficients
satisfying the stability criteria derived earlier and, in fact, only if Ay and
0 are both positive and finite. It can be noticed immediately that when 0 + 0 the
quantities a/M and b/M approach infinity; or tracking back through the derivation

of a/ﬁ and b/ﬁ, it can be seen that é stationary two-per-rev circular wobble (with

any center location and any radius) is a solution of Eqs. (1) and (2) if M = 0
and 6 = 0. (This observation remains valid when D # 1.) The thrust vector

is stationary. The nature of the decay when ¢ is very small will be discussed

later.

“.‘/;q

For the case Ag = 0, it is apparent from Eq. (8) that )y = 0 ({i.e., w], wy,

8, constant) is a solution. From Eqs. (7) and (1), setting derivatives to zero,

)
’\

it is seen that this solution has the properties

-

8y = w) = constant

! ! D+ K
Uz—- A b)l = - B wl
1
91=—w2

This is a pure rotation about the w—axis. In the u-v plane it is a one-per-rev

circular wobble with the center at u=v=o and can have any arbitrary radius.
A

If Ag ~ 0, Ay = - Kg is a solution; that is,
- 1
At
X 8, * constant x e
KlK
61='-A— 82

1 - "'l f ' 1 ) " ¥ir $ - ' | .
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In the u-v plane this is a logaritnmic spiral which approaches the origin as

t >, 1f Ag and A) are positive. The .thrust vector also describes s logarithmic

spiral.

STEADY MOTION OF CONTROL AXIS

Let us define a relative teeter‘angle by rewriting Eq. (6).

8y = (u=yy) cos t + (v-vp) sin t _ (6')

This is the angle between axis 1 and a new reference plane that is pitched and

rolled by angles u,, v, relative to the u-v piane. Other things being equal,

any of the steady—state motions in the u~v plane considered previously are simply

displaced by the amounts u, and T We will call axis w' normal to this plane and

coinciding with w when u, = v, = o the "control axis.”

Let us consider a éteady plitch-rate displacement of the countrol axis

uy = pt

Ideally, we might hope for a steady-state response u ™= pt + a, v = 0 with axis

3 tracking the control axis with constant lag angle —a; however, the preceding

studies lead us to expect that there will be a two—-per-rev circular wobble and

a roll offset angle b superimposed on this ideal response. It is easily confirmed

Ffrom Eqs. (3) and (4) that the motion

wy=psint

wy) = p cos t
is a pure translation u = pt in the u-v plane; whereas the motions
w; =qsint W) =r cos t
and

Wy =-q co8 t jw =rsint

are stationary two-per-~rev circular wobbles,

10

Wy
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v ,.‘ Taking

$
.::::' w) =psint +qsint +rcost
DY)
yhe
:::::' w; mpcost-qcost+rsint
h)
—:o,:;: ’ and from Eqs. (3), (4), (5), and (6)
!‘\‘l
. - .
::f::' 82 = (b~q/2) sin t + (a-r/2) cos t
-}:'ql' .
5{!}}5 81 = (b+q/2) cos t - (a+r/2) sin t
o and Eqs. (1) and (2), with M = 0 and D = 1,
t
s"‘:'
::;{:: KB - (i+a)
() B e
i PRI
®
o
b
i
;::". r = 2K1 P
ey KB + (1-4)
i
-
e .
)
i
:o:':l
R,
»,
3 4,0
e
iyt
pis belor b,
:.":: 2 KIK
9
-‘.:',;. The diameter of the wobble circle is qu + rl,
KNG .
l.'l
:3:;. Now, as previously stated, the pitch lag and roll offset are -a and b,
’Q‘g'
:::::. respectively, in terms of the mean position of axis 3; however, the rotor thrust
A -
e vector, in general, does not lie along axis 3. It lies (with steady state motion)
K
33% - along a line perpendicular to the plane described by axis l. From the above
e
‘:‘2& expression for 69 it is seen that
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Thrust Vector 2

B___2 B
¢u = =g /2 == = p+ sin 2t (15)
Pitch Lag K KlB + (1-A) 2
Thrust Vector 1 A 2

¢y =b-q/2 = — — P+ 201 + cos 2t) (16)
Roll Offset .. K KB+ (-4 2

= 2(1-M/K . _2BJK

LTPREF (-8 T PR (a) Ot

_ KB = (1+A) + 2(1-A)/K 2(K,~B/K)

b2 = p K3 ¥ (18 cos t - P gg+ (1-a) St

1 1

This represents a mean lag and offset proportional to p plus a two—per-rev
wobble of the thrust vector of amplitude p/2. The thrust vector precesses in

surges at angular rates oscillating tetween zero and 2p.

DECAY OF CONTROL RESPONSE ERROR
In practical cases, A, B, and D are all of order unity, allowing Egqs. (15)

and (16) to be rewritten approximately as

by = Ezﬁ p+ %‘sin 2t
1 1

. P
oy = 0+ 5(1 + cos 2t)
for steady-state movement of the control axis. If the control axis movement is -
suddenly arrested, the quantity ¢, can be thought of as a control response error,

which will decay approximately as follows (considering only the mean position of

12
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the thrust vector &nd ignoring the two-per-rev wobble):

2 .
$y & - E—E-¢u
1
B L
* 2

¢, * constant x e

This provides a useful approximation within the range K < 0.5, KK < 0.25, wherein
the wobble is sufficiently small relative tc the error that the thrust vector
can approach the control axis in a more or less straight line fashion. With

KiK = 0,25, the error is reduced by about half per rotor revolution.

DISCUSSION OF NUMERICAL EXAMPLES
A digital simulation of Eqs. (1) and (2) has been coded on an HP=9836 micro-
computer, and a number of illustrative example cases have been executed. These

cases are presented in Figures 2 through 10 as graphs showing traces of the motion

of the thrust vector on the u-v plane.
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Fig. 2. Decaying control response error with behavior
near the Ay = 0 stability boundary.

In this example the feedback constants Kj and K are set to values where the

rotor is barely stable. The control axis was moved away from the origin and re-

turned to the origin to introduce a disturbance, and several revolutions were

allowed to elapse before the trace was started. Four revolutions of the one-
per-rev spiral decay of the thrust axis trajectory around the control axis are

showmn.
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fay Fig. 3. Decaying control response error with behavior
near the ¢ = 0 stability boundary.

(a) K = 0,01, KK = 0.025.

With the rotor at steady state and the thrust vector at the origin, the
et contrcl axis ("+") was suddenly moved to u = v = 0.25. Four rotor revelutions
b of response are shown. With both K and KK very small, the response is nearly

. pure (i.e., straight-line motion toward the control axis) but very slow.
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Fig. 3. Decaying control response error with behavior
near the ¢ = O stability boundary. (continued)

(b) K = 0.1, K1K = 0.025.

The conditions for this example were the same as for Figure 3a, except that
K was not so small, even though KK was the same. The initisl response (first
revolution) was essentially at right angles to the desired direction. This

unwanted excursion damped quickly and the subsequent response was relatively pure

but slow.
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Fig. 4. Decaying control response error with near-optimum
gain settings (K1K = 0.25, K £ 0.2).

(a) K = 0,01,

The next several examples are s3imilar to the preceding ones, but with gain
settings well into the stable range. With K)K = 0.25, the error decays by about
half in each rotor revolution {(two “"swoopa"” of the thrust vector occur per

. revolution; four revolutions are shown). With K < 0.2, the response is relatively

pure, i.e., excursions at right angles to the desired direction are relatively
small. The largest excursion occurs ian the first revolution. With K = 0.01,

! it lies to the right.
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Fig. 4. Decaying control response error with near-opt imum
gain settings (K;K = 0.25, K 5 0.2). (continued)

{(b) K = 0.0625,

With K = 0.0625, the initial excursion is still to the right but smaller.

(Actually, the very first excursion is a nearly imperceptible one to the left.)
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Fig. 4. Decaying control response error with near-optimum
gain settings (K,K = 0.25, K £ 0,2). (continued).

(¢) K= 0.2

With X = 0.2, the initial excursion axtends far enough to the left to begin

to become slightly objectionable.
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Fig. 5. Decaying control response error with near-optimum :
KlK (0.25) but excessive K (0.5). © e

o b

With excessive teetering moment feedback, there are excessive excursions

to the right and left of the desired trajectory.
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Fig. 6. Decaying control response error with near-optimum
gain settings but reduced feather stability.

0.3

A too~low value of the feather stability coefficient A also leads to excessive

excursions to the left and right of the desired trajectory.
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Fig. 7. Decaying control response error with near-optimum
gain settings but reduced damping.

This example is the same as the one presented in Figure 4b, except that the
damping coefficient B has been halved. The response is relatively quite pure,

but the trajectory overshoots its objective slightly. This could be avoided

by reducing K;K.
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Fig. 8. Decaying control response error with excessive
(but still stable) gain settings.

With excessive gains, the response becomes erratic and jerky. In the example
shown, the error is reduced by about 80 percent in one revolution, but the flying
quality would be very unpleasant. If K were further increased to 0.9 or K| were
further increased to 2.7, thus approaching the Ag = 0 stability boundary, the
response would degenerate to a spiral of initially large amplitude around the

control axis as shown in Figure 2.
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Fig. 9. Response to a steady motion of the control axis.

(a) Near-optimum gain settings.

In this example, the control axis ("+") is moving steadily from left to
right at a rate of 0.0l times the rotor rotation rate. The thrust vector lags
behind, moving at the same average rate superimposed on a small two-per-rev

wobble as dictated by Eqs. (15) and (16).
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Fig. 9. Response to a steady moiion of the control axis. (continued)

(b) Increased gain settings.

With increased gains, the steady state response is the same except that

the lag is reduced.
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Fig. 9. Respouse to a steady motion of the control axis. (continued)
(c) Reduced feather stability.

With feather stability coefficient A less than 1.0, the lag is very slightly
reduced, and the thrust vector trajectory is noticeably offset to the left of the
control axis trajectory. (With A greater than 1,0, the lag would be increased

and the offset would be to the right.)
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Fig. 10. Response to a steadily increasing pitching moment.
(a) A= 0.5, E=0.

In this example and Figures 10b and 10c, the rotor is initially at steady
state with the control axis and thrust vector at u = up = -0.15, v = vp = M. 15.
In the course of 12 revolutions shown, the nondimensional pitching moment is
! steadily increased from zero to 0.03125. (i.e., M = 0.0625 t/24/7 cos t).
{ ‘ With A less than 1.0, E = 0, the thrust vector precesses in the positive pitch
angle direction. There is also a small roll offset assoclated with the rate
of pitching moment Increase. (A constant pitching moment produces a pitch angle
response but no roll offset; see Eq. (14).) With A greater than 1.0, E = 0, the X
thrust vector would precess in the negative pitch angle directiom. However, b
- as discussed in the next example, this is not physically possible.
{ 27
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Fig. 10. Response to a steadily increasing pitching moment. {(continued)
(b) A= 1.0, E= 0.5,

The effect of E > 0 is very similar to the effect of A < 1.0, The design
parameters A and E are not independent as will be seen by raviewing their defini-
tions in the Notation list and noting that the angles €] and €4 are, for a rotor
with conventional aerodynamics, the same angle. Since (I3-I3)/I; is always less N

than unity, A = 1.0 is not attainable without E > 0; the condition EB + (1-A) = O

necessary to prevent a positive pitch angle response to a positive pitching moment
is not attainable at all. In fact, EB + (1-A) = 1 - (I3~I3)/I}. This is not an

undesirable characteristic so long as (I3-13)/I]} is not too much less than unity.
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It is the necessary characteristic for airspeed stability in hover. With the
control axis held vertical, a small airspeed in any direction will cause the thrust

vector to tilt in the opposite direction, reducing the airspeed. A value too

-~

much below unity, however, would necessitate a large horizontal tail for speed
stability at post-transition speeds (where pitching moment on the rotor decreases
with Increasing speed), large control inputs for roll trim at high forward speed,

and pitch trim at transition speed.
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. Fig. 10. Response to a steadily increasing pitching moment. (continued)
(¢) A=1.0, E= 0,

O

As expected, the only response with A = 1, E=0 is a very smail positive

roll angle response to the rate of pitching moment increase.

i
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CONCLUSIONS
1. A very simple feedback system providing a negative teetering moment and
negative feathering moment proportional to teeter angle is sufficient to provide
{ the desired type of stability and control. The required levels of feedback gains
for good flying qualities appear to be easily attainable with either a circulation
control rotor or a rotor with moveabie trailing edge flaps.
2. Further requirezents for good flying qualities are:
a. The quantity (I3=I3)/I} should be only slightly less than unity, and
b. The damping axis should be nearly coincident with principal axis 2,
Previous studies have suggested that these requirements can be met with a mass-
balancing of the rotor, which adds appreciably but not unacceptably to its ;eight. ,
A detailed design study is needed to confirm this tentative conclusion.
3. If the requirements of item 2 are met, then a rotor of this type would
have the advantage of very low coupling between longitudinal and lateral stability
and control, compared to a conventional teetering or articulated rotor.
4. A rotor of this type (fully gimballed) is inherently free of vibrations
due to hub moment oscillations (except possibly very small oscillations assoclated
with the feedback system if a mechanical feedback actuaticn is employed). In
all of the steady-state/fixed-control-axis situations consicered herein, it is ,
further totally free of any oscillations of the direction of the thrust vector. »

Small oscillations of the thrust vector djrection do occur in transient situations

and during steady-state precession of the thrust vector to a new position. Two~

=

¥

per-rev oscillations of the thrust vector amplitude and the in-plane force
amplitude at high forward speed would be similar to those of any other two-bladed
roter. All in all, the outlook for relatively low vibration levels appears to

be favorable.
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